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Summary
This whitepaper describes some of the technical details of CVE-2020-1472 (which we have dubbed 

“Zerologon”), a critical vulnerability in Windows Server that has received a CVSS score of 10.0 from Microsoft. 

In order to mitigate this issue, it is highly recommended to install Microsoft’s August 2020 security patches 

on all Active Directory domain controllers. Leaving a DC unpatched will allow attackers to compromise it and 

give themselves domain admin privileges. The only thing an attacker needs for that is the ability to set up TCP 

connections with a vulnerable DC; i.e. they need to have a foothold on the network, but don’t require any 

domain credentials.

The patch that addresses Zerologon also implements some additional defense-in-depth measures that forces 

domain-joined machines to use previously optional security features of the Netlogon protocol. An update in 

February 2021 will further tighten these restrictions, which may break some third-party devices or software. 

Please note that installing the August 2020 patch on all domain controllers (also back-up and read-only ones) 

is sufficient to block the high-impact exploit described here. Refer to Microsoft’s guide on these changes for 

more information.

If you want to make sure you are not vulnerable, you can make use of the test-tool that we published and 

can be downloaded from our Github repo at https://github.com/SecuraBV/CVE-2020-1472. We will not 

release a complete working Proof-of-Concept exploit, but it is our assessment that such an exploit could be 

constructed by malicious actors with some effort, based on the patch for the CVE alone.

The attack described here takes advantage of flaws in a cryptographic authentication protocol that proves 

the authenticity and identity of a domain-joined computer to the DC. Due to incorrect use of an AES mode of 

operation it is possible to spoof the identity of any computer account (including that of the DC itself) and set 

an empty password for that account in the domain. 
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Vulnerability Details
 

The Netlogon protocol
The Netlogon Remote Protocol is an RPC interface available 

on Windows domain controllers. It is used for various task 

related to user and machine authentication, most commonly 

to facilitate users logging in to servers using the NTLM 

protocol. Other features include the authentication of 

NTP responses, and notably: letting a computer update its 

password within the domain. The RPC interface is available 

over TCP through a dynamic port allocated buy the domain 

controller’s ‘portmapper’ service, or through an SMB pipe on 

port 445.

What’s interesting about this protocol is that it does not 

use the same authentication scheme as other RPC services. 

Instead it uses a customized cryptographic protocol to let a 

client (a domain-joined computer) and server (the domain 

controller) prove to each other that they both know a shared 

secret. This shared secret is a hash of the client’s computer 

account password. The reason for this is that computer 

accounts did not use to be first-class principles in the 

Windows NT days, so they could not make use of standard 

user authentication schemes like NTLM or Kerberos.

A Netlogon session is initiated by the client, whereby client 

and server exchange random 8-byte nonces (called client 

and server challenges) with each other. They both compute 

a session key by mixing both challenges with the shared 

secret using a key derivation function. Then the client uses 

this session key to compute a client credential. The server 

recomputes this same credential value and if it matches it is 

concluded that the client must know the session key, and 

therefore the client must also know the computer password. 

 

During the authentication handshake both parties can 

negotiate whether they want to seal and sign (encrypt and 

cryptographically authenticate) subsequent messages, which 

is essential to protect against network-level attackers. When 

encryption is disabled, all Netlogon calls that perform an 

important action must still contain an authenticator value 

that is also computed using the session key.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Implementing cryptographic protocols is tricky: one small 

oversight can lead to all kinds of methods to bypass the 

intended function of the scheme (in this case: computer 

authentication and transport security). Since I was not aware 

of any published security audits of this protocol, I decided to 

take a deeper look at it myself. Initially, I was mostly looking 

for person-in-the-middle attacks that assume an attacker 

that can see and modify traffic between a legitimate client 

and server. This yielded CVE-2019-1424, which could 

be used to gain local admin access to client systems of 

which the attacker could see and modify traffic. However, 

afterwards, when more closely examining the cryptography 

used for the initial authentication handshake, I discovered a 

much more severe general authentication bypass, which can 

be carried out by any attacker who is able to set up a TCP 

connection with the domain controller.

Figure 1: Simplified Netlogon authentication handshake
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Core vulnerability: insecure use of AES-CFB8
The cryptographic primitive both the client and server use 

to generate credential values is implemented in a function 

called ComputeNetlogonCredential, as defined in the 

protocol specification. This function takes an 8-byte input 

and performs a transformation on it with the secret session 

key that produces an output of equal length. The underlying 

assumption behind it is that an attacker who does not know 

the session key will not be able to calculate or guess the 

correct output matching a certain input, allowing it to be 

used to prove knowledge of the session key. 

 

There are two versions of this function: one based on 2DES 

and a newer version based on AES. Which one is used 

depends on flags set by the client during authentication. 

However, the default configuration of a modern version of 

Windows Server will reject any attempt to authenticate using 

the 2DES scheme. Therefore, in most domains only the AES 

scheme can be used. Interestingly, it is precisely this newer 

scheme in which I found the vulnerability. The older version 

is not affected by this specific attack (although 2DES is still 

considered insecure for other reasons).

 

The basic AES block cipher operation takes an input of 16 

bytes and permutes it to an equally-sized output. In order to 

encrypt larger or smaller inputs a mode of operation has to 

be chosen. The ComputeNetlogonCredential function, which 

needs to transform only 8 bytes, makes use of the rather 

obscure CFB8 (8-bit cipher feedback) mode. This mode is 

about 16 times slower than any of the more common modes 

of operation used with AES, which probably explains why it 

is not widely used.

AES-CFB8 encrypts each byte of the plaintext by prepending 

a 16-byte ‘Initialisation Vector’ to the plaintext, then 

applying AES to the first 16 bytes of the IV+plaintext, taking 

the first byte of the AES output, and XOR’ing it with the 

next plaintext byte. This is illustrated in Figure 2.

Figure 2: An illustration of encryption with the AES-CFB8 mode of operation.
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In order to be able to encrypt the initial bytes of a 

message, an Initialisation Vector (IV) must be specified 

to bootstrap the encryption process. This IV value must 

be unique and randomly generated for each separate 

plaintext that is encrypted with the same key. The 

ComputeNetlogonCredential function, however, defines 

that this IV is fixed and should always consist of 16 

zero bytes. This violates the requirements for using AES-

CFB8 securely: its security properties only hold when IVs are 

random.

So, is this actually a problem here? What can go wrong with 

an all-zero IV? Because of the obscurity of CFB8, I could 

not find any literature on this subject. So I tried to come up 

with some chosen-plaintext attacks myself and figured out 

something interesting: for 1 in 256 keys, applying AES-

CFB8 encryption to an all-zero plaintext will result in 

all-zero ciphertext. Figure 3 shows why this is the case.

 

 

In fact, this property is a bit more general: when an IV 

consists of only zeroes, there will be one integer 0 ≤ X ≤ 

255 for which it holds that a plaintext that starts with n 

bytes with value X will have a ciphertext that starts with n 

bytes with value 0. X depends on the encryption key and is 

randomly distributed. 

In order to attack Netlogon, we don’t need the more general 

property: it is enough to know that an all-zero input can 

result in an all-zero output. So let’s see how we can exploit 

this.

Figure 3: When encrypting a message consisting only of zeroes, with an all-zero IV, 
there is a 1 in 256 chance that the output will only contain zeroes as well.
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Exploit step 1: spoofing the client credential
After exchanging challenges with a NetrServerReqChallenge 

call, a client then authenticates itself by doing a 

NetrServerAuthenticate3 call. This call has a parameter 

called ClientCredential, and it is computed by applying the 

ComputeNetlogonCredential to the client challenge that was 

sent in the previous call. Since this challenge can actually be 

chosen arbitrarily by us, there’s nothing stopping us from 

setting this challenge to 8 zeroes. This means that for 1 in 

256 session keys, the correct ClientCredential will also consist 

of 8 zeroes!

So how do we know our session uses one of these keys? 

Well, we don’t. But every time we try to authenticate 

like this the server will still be generating a unique server 

challenge that will also be a parameter of the session key 

derivation. This means that the session key will be different 

(and uniformly distributed) for every authentication attempt. 

Since computer accounts are not locked after invalid login 

attempts, we can simply try a bunch of times until we hit 

such a key and authentication succeeds. The expected 

average number of tries needed will be 256, which only 

takes about three seconds in practice.

With this method, we can log in as any computer in the 

domain. This includes backup domain controllers, and even 

the targeted domain controller itself!

 

Exploit step 2: disabling signing and sealing
While step 1 allows us to bypass the authentication call, we 

still have no idea what the value of the session key is. This 

becomes problematic due to Netlogon’s transport encryption 

mechanism (“RPC signing and sealing”), which uses this 

key but a completely different scheme than the vulnerable 

ComputeNetlogonCredential function.

Luckily, for us, signing and sealing is optional, and 

can be disabled by simply not setting a flag in the 

NetrServerAuthenticate3 call. Modern clients will by default 

refuse to connect when this flag is not set by the server 

(likely a measure to prevent downgrade attacks), but 

servers will not refuse clients that request no encryption. 

I assume this might be a design choice to maintain legacy 

compatibility.

Since we act as the client during this attack, we can simply 

omit the flag and continue.

Exploit step 3: spoofing a call
Even when call encryption is disabled, every call that 

does something interesting must contain a so-called 

authenticator value. This value is computed by applying 

ComputeNetlogonCredential (with the session key) to the 

value ClientStoredCredential + Timestamp.

ClientStoredCredential is an incrementing value maintained 

by the client. When performing the handshake, it is 

intialised to the same value as the ClientCredential we 

provided. This client credential consists solely of zeroes, so 

ClientStoredCredential will be 0 for the first call performed 

after authentication.

Timestamp should contain the current Posix time, 

and is included in the call by the client along with the 

authenticator. It turns out, however, that the server does not 

actually place many restrictions on what this value can be 

(which makes sense, otherwise clock skew would become 

very troublesome), so we can simply pretend that it’s January 

1st, 1970 and also set this value to 0.

If we got through step 1, we also know that 

ComputeNetlogonCredential(0) = 0. So we can authenticate 

our first call by simply providing an all-zero authenticator and 

an all-zero timestamp.

Exploit step 4: changing a computer’s AD 
password
So now that we can send a Netlogon call as any computer, 

what shall we do? There are a number of calls related to 

account database replication, but these have been disabled 

since the introduction of Active Directory, so unfortunately 

we can’t use them to extract credentials.

Another interesting call is NetrServerPasswordGet, which 

allows getting an NTLM hash of a computer password. 

Unfortunately this hash is encrypted with the session key, 

using yet another mechanism, so this is not useful for us.

What we can exploit, however, is the 

NetrServerPasswordSet2 call. This is used to set a new 

computer password for the client. This password is not 

hashed but it is encrypted with the session key. How? Well, 

again using CFB8 with an all-zero IV!



The plaintext password structure in the Netlogon protocol 

consists of 516 bytes. The final four bytes indicate the 

password length in bytes. All bytes in the structure that are 

not part of the password function are seen as padding and 

can have arbitrary values.

If we simply provide 516 zeroes here, this will be decrypted 

to 516 zeroes, i.e. a zero-length password. It turns out that 

setting empty passwords for a computer is not forbidden 

at all, so this means we can set an empty password for any 

computer in the domain! (see Figure 4.)

Once that is done, we can set up a new Netlogon 

connection on behalf of this computer. This time we know 

the computer’s password (it’s empty), so we can follow the 

protocol normally. If we wish, we can now set any other 

non-empty password as well.

When changing a computer password in this way it is only 

changed in the AD. The targeted system itself will still locally 

store its original password. That computer will then not be 

able to authenticate to the domain anymore, and it can only 

be re-synchronized through manual action. So at this point 

we already have a pretty dangerous denial-of-service exploit 

that allows us to lock out any device from the domain. Also, 

whenever a computer account has special privileges within a 

domain, these can now be abused.

Exploit step 5: from password change to 
domain admin
One of the computers of which we can change the password 

is that of the domain controller itself, even when this is 

the same domain controller we are connecting to over 

Netlogon. Doing so creates an interesting situation, where 

the DC password stored in AD is different from the password 

stored in its local registry (at HKLM\SECURITY\Policy\

Secrets\$machine.ACC). This appears to cause the DC to 

misbehave in various unpredictable ways (in my lab setup, its 

DNS resolver stopped working for example).

As an attacker, we would like to use this to log in to the 

DC using its own password, so that we can compromise it. 

Figure 4: The Zerologon attack, which effectively boils down to filling particular message parameters with 
zeroes and retrying the handshake a few times in order to set an empty computer password on the DC.
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However, this only works when the DC uses the password 

stored in AD to validate our login attempt, rather than the 

one stored locally. After some experimentation, I found 

that simply running Impacket’s ‘secretsdump’ script with 

the new DC password worked. This script will successfully 

extract all user hashes from the domain through the Domain 

Replication Service (DRS) protocol. This includes domain 

administrator hashes (including the ‘krbtgt’ key, which can 

used to create golden tickets), that could then be used to 

login to the DC (using a standard pass-the-hash attack) 

and update the computer password stored in the DC’s 

local registry. Now the DC behaves normally again, and the 

attacker has become domain admin.

Conclusion
By simply sending a number of Netlogon messages in which 

various fields are filled with zeroes, an attacker can change 

the computer password of the domain controller that is 

stored in the AD. This can then be used to obtain domain 

admin credentials and then restore the original DC password.

This attack has a huge impact: it basically allows any attacker 

on the local network (such as a malicious insider or someone 

who simply plugged in a device to an on-premise network 

port) to completely compromise the Windows domain. The 

attack is completely unauthenticated: the attacker does not 

need any user credentials.

The patch released on Patch Tuesday of August 2020 

addresses this problem by enforcing Secure NRPC (i.e. 

Netlogon signing and sealing) for all Windows servers and 

clients in the domain, breaking exploit step 2. Furthermore, 

my experiments show that step 1 is also blocked, even when 

not dropping the sign/seal flag. I don’t know how exactly 

this is implemented: possibly by blocking authentication 

attempts where a ClientCredential field starts with too many 

zeroes. I did not succeed in bypassing this check. Either way, 

the Zerologon attack such as described here will no longer 

work if the patch is installed.

If practical ways would exist to bypass the step 1 protections 

(perhaps involving a lot of additional brute-forcing), this 

could put legacy or third-party devices at risk for which 

Secure NRPC is not enforced. An attacker could then still 

reset the computer password of these devices as stored in 

AD, which would deny service by effectively disconnecting 

those devices from the domain. Potentially this would also 

allow man-in-the-middle attacks similar to CVE-2019-1424, 

with which an attacker could get local admin access to these 

particular devices.

To address this remaining risk, Windows will log warning 

events when such devices exist in the domain. The option 

also exists to turn on “enforcement mode” which will 

mandate Secure NRPC for all devices, even when this would 

cause them to break. In February 2021 this enforcement 

mode will be turned on by default, requiring administrators 

to update, decommission or whitelist devices that do not 

support Secure NRPC beforehand. See Microsoft’s guide 

for more information.
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