
Zerologon:
Unauthenticated domain controller compromise

by subverting Netlogon cryptography (CVE-2020-1472)

by Tom Tervoort, September 2020

W H I T E P A P E R

https://www.secura.com/

Summary
This whitepaper describes some of the technical details of CVE-2020-1472 (which we have dubbed

“Zerologon”), a critical vulnerability in Windows Server that has received a CVSS score of 10.0 from Microsoft.

In order to mitigate this issue, it is highly recommended to install Microsoft’s August 2020 security patches

on all Active Directory domain controllers. Leaving a DC unpatched will allow attackers to compromise it and

give themselves domain admin privileges. The only thing an attacker needs for that is the ability to set up TCP

connections with a vulnerable DC; i.e. they need to have a foothold on the network, but don’t require any

domain credentials.

The patch that addresses Zerologon also implements some additional defense-in-depth measures that forces

domain-joined machines to use previously optional security features of the Netlogon protocol. An update in

February 2021 will further tighten these restrictions, which may break some third-party devices or software.

Please note that installing the August 2020 patch on all domain controllers (also back-up and read-only ones)

is sufficient to block the high-impact exploit described here. Refer to Microsoft’s guide on these changes for

more information.

If you want to make sure you are not vulnerable, you can make use of the test-tool that we published and

can be downloaded from our Github repo at https://github.com/SecuraBV/CVE-2020-1472. We will not

release a complete working Proof-of-Concept exploit, but it is our assessment that such an exploit could be

constructed by malicious actors with some effort, based on the patch for the CVE alone.

The attack described here takes advantage of flaws in a cryptographic authentication protocol that proves

the authenticity and identity of a domain-joined computer to the DC. Due to incorrect use of an AES mode of

operation it is possible to spoof the identity of any computer account (including that of the DC itself) and set

an empty password for that account in the domain.

Zerologon:
Unauthenticated domain controller compromise

by subverting Netlogon cryptography (CVE-2020-1472)

https://github.com/SecuraBV/CVE-2020-1472

Vulnerability Details

The Netlogon protocol
The Netlogon Remote Protocol is an RPC interface available

on Windows domain controllers. It is used for various task

related to user and machine authentication, most commonly

to facilitate users logging in to servers using the NTLM

protocol. Other features include the authentication of

NTP responses, and notably: letting a computer update its

password within the domain. The RPC interface is available

over TCP through a dynamic port allocated buy the domain

controller’s ‘portmapper’ service, or through an SMB pipe on

port 445.

What’s interesting about this protocol is that it does not

use the same authentication scheme as other RPC services.

Instead it uses a customized cryptographic protocol to let a

client (a domain-joined computer) and server (the domain

controller) prove to each other that they both know a shared

secret. This shared secret is a hash of the client’s computer

account password. The reason for this is that computer

accounts did not use to be first-class principles in the

Windows NT days, so they could not make use of standard

user authentication schemes like NTLM or Kerberos.

A Netlogon session is initiated by the client, whereby client

and server exchange random 8-byte nonces (called client

and server challenges) with each other. They both compute

a session key by mixing both challenges with the shared

secret using a key derivation function. Then the client uses

this session key to compute a client credential. The server

recomputes this same credential value and if it matches it is

concluded that the client must know the session key, and

therefore the client must also know the computer password.

During the authentication handshake both parties can

negotiate whether they want to seal and sign (encrypt and

cryptographically authenticate) subsequent messages, which

is essential to protect against network-level attackers. When

encryption is disabled, all Netlogon calls that perform an

important action must still contain an authenticator value

that is also computed using the session key.

Implementing cryptographic protocols is tricky: one small

oversight can lead to all kinds of methods to bypass the

intended function of the scheme (in this case: computer

authentication and transport security). Since I was not aware

of any published security audits of this protocol, I decided to

take a deeper look at it myself. Initially, I was mostly looking

for person-in-the-middle attacks that assume an attacker

that can see and modify traffic between a legitimate client

and server. This yielded CVE-2019-1424, which could

be used to gain local admin access to client systems of

which the attacker could see and modify traffic. However,

afterwards, when more closely examining the cryptography

used for the initial authentication handshake, I discovered a

much more severe general authentication bypass, which can

be carried out by any attacker who is able to set up a TCP

connection with the domain controller.

Figure 1: Simplified Netlogon authentication handshake

https://www.secura.com/blog-cve-2019-1424
https://www.secura.com/

Core vulnerability: insecure use of AES-CFB8
The cryptographic primitive both the client and server use

to generate credential values is implemented in a function

called ComputeNetlogonCredential, as defined in the

protocol specification. This function takes an 8-byte input

and performs a transformation on it with the secret session

key that produces an output of equal length. The underlying

assumption behind it is that an attacker who does not know

the session key will not be able to calculate or guess the

correct output matching a certain input, allowing it to be

used to prove knowledge of the session key.

There are two versions of this function: one based on 2DES

and a newer version based on AES. Which one is used

depends on flags set by the client during authentication.

However, the default configuration of a modern version of

Windows Server will reject any attempt to authenticate using

the 2DES scheme. Therefore, in most domains only the AES

scheme can be used. Interestingly, it is precisely this newer

scheme in which I found the vulnerability. The older version

is not affected by this specific attack (although 2DES is still

considered insecure for other reasons).

The basic AES block cipher operation takes an input of 16

bytes and permutes it to an equally-sized output. In order to

encrypt larger or smaller inputs a mode of operation has to

be chosen. The ComputeNetlogonCredential function, which

needs to transform only 8 bytes, makes use of the rather

obscure CFB8 (8-bit cipher feedback) mode. This mode is

about 16 times slower than any of the more common modes

of operation used with AES, which probably explains why it

is not widely used.

AES-CFB8 encrypts each byte of the plaintext by prepending

a 16-byte ‘Initialisation Vector’ to the plaintext, then

applying AES to the first 16 bytes of the IV+plaintext, taking

the first byte of the AES output, and XOR’ing it with the

next plaintext byte. This is illustrated in Figure 2.

Figure 2: An illustration of encryption with the AES-CFB8 mode of operation.

https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-NRPC/%5BMS-NRPC%5D.pdf
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#CFB

In order to be able to encrypt the initial bytes of a

message, an Initialisation Vector (IV) must be specified

to bootstrap the encryption process. This IV value must

be unique and randomly generated for each separate

plaintext that is encrypted with the same key. The

ComputeNetlogonCredential function, however, defines

that this IV is fixed and should always consist of 16

zero bytes. This violates the requirements for using AES-

CFB8 securely: its security properties only hold when IVs are

random.

So, is this actually a problem here? What can go wrong with

an all-zero IV? Because of the obscurity of CFB8, I could

not find any literature on this subject. So I tried to come up

with some chosen-plaintext attacks myself and figured out

something interesting: for 1 in 256 keys, applying AES-

CFB8 encryption to an all-zero plaintext will result in

all-zero ciphertext. Figure 3 shows why this is the case.

In fact, this property is a bit more general: when an IV

consists of only zeroes, there will be one integer 0 ≤ X ≤

255 for which it holds that a plaintext that starts with n

bytes with value X will have a ciphertext that starts with n

bytes with value 0. X depends on the encryption key and is

randomly distributed.

In order to attack Netlogon, we don’t need the more general

property: it is enough to know that an all-zero input can

result in an all-zero output. So let’s see how we can exploit

this.

Figure 3: When encrypting a message consisting only of zeroes, with an all-zero IV,
there is a 1 in 256 chance that the output will only contain zeroes as well.

https://www.secura.com/

Exploit step 1: spoofing the client credential
After exchanging challenges with a NetrServerReqChallenge

call, a client then authenticates itself by doing a

NetrServerAuthenticate3 call. This call has a parameter

called ClientCredential, and it is computed by applying the

ComputeNetlogonCredential to the client challenge that was

sent in the previous call. Since this challenge can actually be

chosen arbitrarily by us, there’s nothing stopping us from

setting this challenge to 8 zeroes. This means that for 1 in

256 session keys, the correct ClientCredential will also consist

of 8 zeroes!

So how do we know our session uses one of these keys?

Well, we don’t. But every time we try to authenticate

like this the server will still be generating a unique server

challenge that will also be a parameter of the session key

derivation. This means that the session key will be different

(and uniformly distributed) for every authentication attempt.

Since computer accounts are not locked after invalid login

attempts, we can simply try a bunch of times until we hit

such a key and authentication succeeds. The expected

average number of tries needed will be 256, which only

takes about three seconds in practice.

With this method, we can log in as any computer in the

domain. This includes backup domain controllers, and even

the targeted domain controller itself!

Exploit step 2: disabling signing and sealing
While step 1 allows us to bypass the authentication call, we

still have no idea what the value of the session key is. This

becomes problematic due to Netlogon’s transport encryption

mechanism (“RPC signing and sealing”), which uses this

key but a completely different scheme than the vulnerable

ComputeNetlogonCredential function.

Luckily, for us, signing and sealing is optional, and

can be disabled by simply not setting a flag in the

NetrServerAuthenticate3 call. Modern clients will by default

refuse to connect when this flag is not set by the server

(likely a measure to prevent downgrade attacks), but

servers will not refuse clients that request no encryption.

I assume this might be a design choice to maintain legacy

compatibility.

Since we act as the client during this attack, we can simply

omit the flag and continue.

Exploit step 3: spoofing a call
Even when call encryption is disabled, every call that

does something interesting must contain a so-called

authenticator value. This value is computed by applying

ComputeNetlogonCredential (with the session key) to the

value ClientStoredCredential + Timestamp.

ClientStoredCredential is an incrementing value maintained

by the client. When performing the handshake, it is

intialised to the same value as the ClientCredential we

provided. This client credential consists solely of zeroes, so

ClientStoredCredential will be 0 for the first call performed

after authentication.

Timestamp should contain the current Posix time,

and is included in the call by the client along with the

authenticator. It turns out, however, that the server does not

actually place many restrictions on what this value can be

(which makes sense, otherwise clock skew would become

very troublesome), so we can simply pretend that it’s January

1st, 1970 and also set this value to 0.

If we got through step 1, we also know that

ComputeNetlogonCredential(0) = 0. So we can authenticate

our first call by simply providing an all-zero authenticator and

an all-zero timestamp.

Exploit step 4: changing a computer’s AD
password
So now that we can send a Netlogon call as any computer,

what shall we do? There are a number of calls related to

account database replication, but these have been disabled

since the introduction of Active Directory, so unfortunately

we can’t use them to extract credentials.

Another interesting call is NetrServerPasswordGet, which

allows getting an NTLM hash of a computer password.

Unfortunately this hash is encrypted with the session key,

using yet another mechanism, so this is not useful for us.

What we can exploit, however, is the

NetrServerPasswordSet2 call. This is used to set a new

computer password for the client. This password is not

hashed but it is encrypted with the session key. How? Well,

again using CFB8 with an all-zero IV!

The plaintext password structure in the Netlogon protocol

consists of 516 bytes. The final four bytes indicate the

password length in bytes. All bytes in the structure that are

not part of the password function are seen as padding and

can have arbitrary values.

If we simply provide 516 zeroes here, this will be decrypted

to 516 zeroes, i.e. a zero-length password. It turns out that

setting empty passwords for a computer is not forbidden

at all, so this means we can set an empty password for any

computer in the domain! (see Figure 4.)

Once that is done, we can set up a new Netlogon

connection on behalf of this computer. This time we know

the computer’s password (it’s empty), so we can follow the

protocol normally. If we wish, we can now set any other

non-empty password as well.

When changing a computer password in this way it is only

changed in the AD. The targeted system itself will still locally

store its original password. That computer will then not be

able to authenticate to the domain anymore, and it can only

be re-synchronized through manual action. So at this point

we already have a pretty dangerous denial-of-service exploit

that allows us to lock out any device from the domain. Also,

whenever a computer account has special privileges within a

domain, these can now be abused.

Exploit step 5: from password change to
domain admin
One of the computers of which we can change the password

is that of the domain controller itself, even when this is

the same domain controller we are connecting to over

Netlogon. Doing so creates an interesting situation, where

the DC password stored in AD is different from the password

stored in its local registry (at HKLM\SECURITY\Policy\

Secrets\$machine.ACC). This appears to cause the DC to

misbehave in various unpredictable ways (in my lab setup, its

DNS resolver stopped working for example).

As an attacker, we would like to use this to log in to the

DC using its own password, so that we can compromise it.

Figure 4: The Zerologon attack, which effectively boils down to filling particular message parameters with
zeroes and retrying the handshake a few times in order to set an empty computer password on the DC.

https://www.secura.com/

However, this only works when the DC uses the password

stored in AD to validate our login attempt, rather than the

one stored locally. After some experimentation, I found

that simply running Impacket’s ‘secretsdump’ script with

the new DC password worked. This script will successfully

extract all user hashes from the domain through the Domain

Replication Service (DRS) protocol. This includes domain

administrator hashes (including the ‘krbtgt’ key, which can

used to create golden tickets), that could then be used to

login to the DC (using a standard pass-the-hash attack)

and update the computer password stored in the DC’s

local registry. Now the DC behaves normally again, and the

attacker has become domain admin.

Conclusion
By simply sending a number of Netlogon messages in which

various fields are filled with zeroes, an attacker can change

the computer password of the domain controller that is

stored in the AD. This can then be used to obtain domain

admin credentials and then restore the original DC password.

This attack has a huge impact: it basically allows any attacker

on the local network (such as a malicious insider or someone

who simply plugged in a device to an on-premise network

port) to completely compromise the Windows domain. The

attack is completely unauthenticated: the attacker does not

need any user credentials.

The patch released on Patch Tuesday of August 2020

addresses this problem by enforcing Secure NRPC (i.e.

Netlogon signing and sealing) for all Windows servers and

clients in the domain, breaking exploit step 2. Furthermore,

my experiments show that step 1 is also blocked, even when

not dropping the sign/seal flag. I don’t know how exactly

this is implemented: possibly by blocking authentication

attempts where a ClientCredential field starts with too many

zeroes. I did not succeed in bypassing this check. Either way,

the Zerologon attack such as described here will no longer

work if the patch is installed.

If practical ways would exist to bypass the step 1 protections

(perhaps involving a lot of additional brute-forcing), this

could put legacy or third-party devices at risk for which

Secure NRPC is not enforced. An attacker could then still

reset the computer password of these devices as stored in

AD, which would deny service by effectively disconnecting

those devices from the domain. Potentially this would also

allow man-in-the-middle attacks similar to CVE-2019-1424,

with which an attacker could get local admin access to these

particular devices.

To address this remaining risk, Windows will log warning

events when such devices exist in the domain. The option

also exists to turn on “enforcement mode” which will

mandate Secure NRPC for all devices, even when this would

cause them to break. In February 2021 this enforcement

mode will be turned on by default, requiring administrators

to update, decommission or whitelist devices that do not

support Secure NRPC beforehand. See Microsoft’s guide

for more information.

Contact us

Would you like to learn more about

our services? Contact us today:

+31 88 888 31 00

info@secura.com

secura.com

Follow us:

https://www.secura.com/blog-cve-2019-1424
https://support.microsoft.com/en-us/help/4557222/how-to-manage-the-changes-in-netlogon-secure-channel-connections-assoc
https://www.linkedin.com/company/securabv
https://facebook.com/securabv
https://twitter.com/securabv
https://www.secura.com/
mailto:info%40secura.com?subject=
https://www.linkedin.com/company/securabv/
https://www.facebook.com/SecuraBV/
https://www.secura.com/

